Vorschlag:
$$ x^2y^\prime+2xy=x\operatorname e^{x^2} $$
$$ x^2y^\prime+2xy=\frac{d}{dx} \,(x^2 y )$$
$$ \frac{d}{dx} \,(x^2 y )=x\operatorname e^{x^2} $$
$$ \int \quad \frac{d}{dx} \,(x^2 y )\quad dx= \int \quad x\operatorname e^{x^2}\quad dx$$
$$ x^2 y = \int \quad x\operatorname e^{x^2}\quad dx$$
$$s=x^2$$$$\frac {ds}{dx}=2x$$$$\frac 1{2x} \cdot \frac {ds}{dx}=1$$
$$ x^2 y = \int \quad x\operatorname e^{s}\frac 1{2x} \cdot \frac {ds}{dx} \quad dx$$
$$ x^2 y = \frac 1{2}\int \quad \operatorname e^{s} \quad {ds}$$
$$ x^2 y = \frac 1{2} \quad e^{s} \quad +C$$
$$ y = \frac 1{2x^2} \quad \left( e^{(x^2)} \quad +C\right)$$
ohne Gewähr