LN(1/2·(e^{x + 3 + LN[2]} - 1)) = 1/2·LN(e^10 - e^5 + 1/4)
LN(1/2·(e^{x + 3 + LN[2]} - 1)) = LN((e^10 - e^5 + 1/4)^{1/2})
1/2·(e^{x + 3 + LN[2]} - 1) = (e^10 - e^5 + 1/4)^{1/2}
1/2·(e^{x + 3 + LN[2]} - 1) = (1/4·(2·e^5 - 1)^2)^{1/2}
1/2·(e^{x + 3 + LN[2]} - 1) = 1/2·(2·e^5 - 1)
e^{x + 3 + LN[2]} - 1 = 2·e^5 - 1
e^{x + 3 + LN[2]} = 2·e^5
e^{x + 3}·e^{LN[2]} = 2·e^5
e^{x + 3}·2 = 2·e^5
e^{x + 3} = e^5
x + 3 = 5
x = 2