0 Daumen
536 Aufrufe

Sei f eine Bilinearform und orthogonal auf V. Weiter sei v0 ∈V mit der Eigenschaft f(vo, vo)≠ 0k und es seien α:=s vo  (Das ist die Spiegelung, die definiert ist als : Für alle v∈V sei vδvo := ((-1k+(-1k)) f(v,v0) f(v0, v0)-1v0 ).

Zeige, dass Vo:= ⟨v0⟩ ein α invarianter Teilraum  ist und das v0α =-v0 ist.

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community