$$ tan(x) = \frac{sin(x)}{cos(x)} $$
\( \frac{tan(x)}{sin(x)^2} = \frac{sin(x)}{cos(x)} \cdot \frac{1}{sin(x)^2} = \frac{1}{sin(x)cos(x)} \)
\( \lim_{x \to 0^+} \frac{tan(x)}{sin(x)^2} = \lim_{x \to 0^+} \frac{1}{sin(x)cos(x)} = \infty \), weil \( sin(0) = 0 \) und \( cos(0) = 1 \) ist.
Das \( \lim_{x \to 0^+} x^x = 1 \) ist beweist man doch wohl eher in einer Übung oder in der Vorlesung und dann benutzt man es einfach ... denke ich mal. Ansonsten ist dieser Beweis im Internet leicht zu finden. Der Grenzwert ist also insgesamt \( \infty - 1 = \infty \) Müsstest Du vielleicht bloß noch formal sauberer aufschreiben als ich.
Beste Grüße
gorgar