Mit Lagrange:
Suche Extremum \(f(x, y) = 8x+32\cdot \sqrt{y} \) mit \(x + y=12\)
\(f(x, y,λ) = 8x+32\cdot \sqrt{y} +λ(x + y-12)\)
\(f_x(x, y,λ) = 8 +λ\) \( 8 +λ=0\) \( λ=-8\)
\(f_y(x, y,λ) =\frac{16}{\sqrt{y}} +λ\) \(\frac{2}{\sqrt{y}} -1=0\) \(y=4\)
\(f_λ(x, y,λ) = x + y-12\) \( x +4-12=0\) \( x=8\)
\(f(8, 4) = 8\cdot 8+32\sqrt{4} =128 \)