Lösung
AB = [-1, 5, -2]
g: X = [4, -2, 3] + r·[-1, 5, -2]
a) am Ursprung,
A' = [-4, 2, -3] ; B' = [-3, -3, -1]
g': X = [-4, 2, -3] + r·[1, -5, 2]
b) an der Ebene E: (X - [4, -2, 3])·[1, 2, 3] = 0
[-1, 5, -2]·[1, 2, 3]/([1, 2, 3]·[1, 2, 3])·[1, 2, 3] = [3/14, 3/7, 9/14]
[-1, 5, -2] - 2·[3/14, 3/7, 9/14] = [- 10/7, 29/7, - 23/7]
g': X = [-4, 2, -3] + r·[- 10/7, 29/7, - 23/7]
c) an der Geraden h: X = [4, -2, 3] + r·[1, 1, 0]
[-1, 5, -2]·[1, 1, 0]/([1, 1, 0]·[1, 1, 0])·[1, 1, 0] = [2, 2, 0]
[2, 2, 0] - ([-1, 5, -2] - [2, 2, 0]) = [5, -1, 2]
g': X = [-4, 2, -3] + r·[5, -1, 2]