$$ \lim _{x \rightarrow \infty}\left(1+\frac{1}{n+4}\right)^{2 n+3} $$
$$ =\lim _{x \rightarrow \infty} e^{\ln \left[\left(1+\frac{1}{n+4}\right)^{2 n+3}\right]} $$
$$=\lim _{x \rightarrow \infty} e^{(2 n+3) \ln \left(1+\frac{1}{n+4}\right)}\\ =e^{\lim _{n \rightarrow \infty}\left[(2 n+3) \cdot \ln \left(1+\frac{1}{n+4}\right)\right]}\\ \Rightarrow \lim _{n \rightarrow \infty}\left[\frac{\ln \left(1+\frac{1}{n+4}\right)}{\frac{1}{2 n+3}}\right] \Rightarrow \frac{0}{0}\\ \begin{array}{l}{\Rightarrow L^{\prime} \text { Hospital }} \\ {=\lim _{n \rightarrow \infty}\left(\frac{-\frac{1}{n^{2}+9 n+120}}{-\frac{2}{(2 n+3)^{2}}}\right.})\end{array}\\ =\lim _{n \rightarrow \infty}\left(\frac{1}{(n+5)(n+4)} \cdot \frac{(2 n+3)^{2}}{2}\right)=\frac{4}{2}=2\\ ⇒e^2$$