1.)
\(f(x)=ax^2(x-N)\) Maximum bei \(M(-4|2)\):
\(f(-4)=16a(-4-N)=2\)
\(a=- \frac{1}{8N+32} \):
\(f(x)=- \frac{25}{2N+8}(x^3-Nx^2)\)
Extremwerteigenschaft \(M(-4|...)\)
\(f'(x)=- \frac{25}{2N+8}(3x^2-2Nx)\)
\(f'(-4)=- \frac{25}{2N+8}(48+8N)=0\)
\(N=-6\) \(a=- \frac{1}{-16} \):
\(f(x)=\frac{1}{16}x^2(x+6)\)
2.) über die Nullstellenform der Parabel:
\(p(x)=a(x-5)(x-13)\)
\(S(9|2)\):
\(p(9)=a(9-5)(9-13)=-16a=2\)
\(a=-\frac{1}{8}\)
\(p(x)=-\frac{1}{8}(x-5)(x-13)\)