Lösung mit Lagrange:
\(U(x,y,λ)=50\ln(x)+75\ln(y)+λ(2x+2y-140)\)
1.)\(U_x(x,y,λ)=\frac{50}{x}+2λ\) → 1.) \(\frac{50}{x}+2λ=0\)
2.)\(U_y(x,y,λ)=\frac{75}{y}+2λ\) → 2.)\(\frac{75}{y}+2λ=0\)
3.) \(U_λ(x,y,λ)=2x+2y-140\) → 3.) \(2x+2y-140=0\)
1.) - 2.):\(\frac{50}{x}=\frac{75}{y}\)
\(50y=75x\) \(2y=3x\) in 3.) : \(2x+3x-140=0\)
\(5x=140\) \(x=28\) \(y=1,5 \cdot 28=42\)
\(U(28,42)=50\ln(28)+75\ln(42)\\=50\cdot 3,332204510175204+75\cdot 3,73766961828336=446,935 \)
Also Antwort c.