+1 Daumen
646 Aufrufe

Jedes ζ ∈ μn , n∈ℕ hat den Betrag |ζ| = 1 und hat daher die Gestalt ζ = cos(α) +i sin(α) mit α=2kπ/n für ein k ∈ {0, …, n-1}. Außerdem weiß ich, dass μn eine zyklische Gruppe von der Ordnung n und μn Untergruppe von ℂx (Einheitengruppe) ist.

Ich soll zeigen:

Bild Mathematik

Ich habe versucht das Induktiv zu zeigen, so langsam tut mir aber der Kopf weh. Ich bin mir auch nicht absolut sicher, welcher der ganzen mir bereits bekannten informationen wirklich wichtig sind.

Hat jemand eine (elegante) Lösung? (:

Avatar von

1 Antwort

0 Daumen

$$\zeta\ne1:\sum_{k=1}^n\zeta^k=-1+\sum_{k=0}^n\zeta^k=-1+\frac{\zeta^{n+1}-1}{\zeta-1}=-1+\frac{\zeta-1}{\zeta-1}=-1+1=0.$$

Avatar von

Das ist sehr hilfreich, danke!

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community