+2 Daumen
1,2k Aufrufe

Für ein festes n ∈ ℕ sei μn = { ζ ∈ ℂ | ζn = 1 } ⊆ ℂ. Zeigen Sie, dass die Menge μn eine Untergruppe von ℂx (EInheitengruppe) ist.

Hallo ihr lieben, kann mir das jemand zeigen? Ich schaue mir die ganze Zeit Untegruppenkriterien an, aber komme nicht voran... Lg Laura

Avatar von

1 Antwort

+2 Daumen
 
Beste Antwort

Ist a ∈ μn, dann ist a· an-1 = 1, also ist μn ⊆ ℂ×.

1n = 1, also 1 ∈ μn .

Sind a, b ∈ μn, dann ist (ab)n = an bn = 1 wegen Assoziativ- und Kommutativgesetz in ℂ, also ab ∈ μn.

Avatar von 107 k 🚀

Stimmt, das macht Sinn! Danke dir <3

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community