Bestimmen Sie für jedes \( t \in \mathbb{R} \) die Lösungsmenge des linearen Gleichungssystems:
$$ \begin{aligned} x_{1}+x_{2}+t x_{3}+2 x_{4} &=1 \\ 2 x_{1}+t x_{2}+x_{3}+x_{4} &=2 \\ x_{1}+x_{2}+2 x_{3}+t x_{4} &=1 \\ t x_{1}+2 x_{2}+x_{3}+x_{4} &=2 t \end{aligned} $$
kann mir jemand einen Ansatz liefern, wie man diese Aufgabe lösen könnte? Ich habe es mit dem Gauß'schen Eliminationsverfahren versucht, aber das hab ich hier wegen dem t nicht hinbekommen. Mit der Determinante könnte ich ja nur zu der Aussage kommen, dass das lineare Gleichungssystem lösbar ist, aber die t's könnte ich nicht bestimmen.
vielen Dank.