ga: x = [2 + a, 1, 1 + a] + r·[1 + a, 1 - a, a]
ha: x = [0, 1 + a, -1] + s·[1, -1, 2]
Gleichsetzen
[2 + a, 1, 1 + a] + r·[1 + a, 1 - a, a] = [0, 1 + a, -1] + s·[1, -1, 2] --> r = -1 ∧ s = 1
S = [2 + a, 1, 1 + a] - [1 + a, 1 - a, a] = [1, a, 1]
n = [1 + a, 1 - a, a] x [1, -1, 2] = [2 - a, -a - 2, -2]
E: (2 - a)·x - (a + 2)·y - 2·z = - a^2 - 3·a
E: (a - 2)·x + (a + 2)·y + 2·z = a^2 + 3·a
Die Schar geht für a^2 + 3·a = a·(a + 3) = 0 durch den Ursprung. Also für a = -3 ∨ a = 0.