15558.53987·1.022^t = 1129·1.022·((1.022^t - 1)/(1.022 - 1))
k·q^t = r·q·((q^t - 1)/(q - 1))
k·(q - 1)/(r·q) = (q^t - 1)/q^t
k·(q - 1)/(r·q)= q^t/q^t - 1/q^t
k·(q - 1)/(r·q)= 1 - 1/q^t
1/q^t = 1 - k·(q - 1)/(r·q)
q^{- t} = 1 - k·(q - 1)/(r·q)
- t = LN(1 - k·(q - 1)/(r·q)) / LN(q)
t = - LN(1 - k·(q - 1)/(r·q)) / LN(q)
einsetzen
t = - LN(1 - 15558.53987·(1.022 - 1)/(1129·1.022)) / LN(1.022) = 16.17089989