Ich bräuchte Hilfe bei folgender Aufgabe.
Bestimmen Sie auf möglichst einfache Art Eigenwerte, Determinante undSpur der folgenden Matrizen:
A=(12;0;0;0 B=(-2;0;0 C=(13;6;8 0;-3;0;0 6;3;0 0;1;-6 0;0;5;0 -7;3;-6) 0;0;3) 0;0;0;1)
Du hast da immer Dreiecksmatrizen stehen und die Eigenwerte sind die Nullstellen des charakteristischen Polynoms, also $$ \det ( A-\lambda I ) = 0 $$ da sich durch die Subtraktion von \( \lambda I \) von \(A \) die Dreiecksform nicht ändert, ist das charakteristische Polynom das Produkt der Diagonalelemente. Und damit sind die Nullstellen und somit die Eigenwerte sehr leicht zu bestimmen, das sind nämlich die Diagonalelemente der Matrix \( A \)
Hallo
bei einer Diagonalmatrix wie A und bei einer Dreiecksmatrix wie B und C stehen die Eigenwerte einfach in der Diagonalen, die Det ist das Produkt der Diagonalelemente, sehen kannst du das wenn du die Det. nach der ersten Spalte oder Zeile entwickelst.
Gruß lul
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos