Aufgabe 3: Es ist bekannt, dass zwei Aussageformen P (x) und Q(x) über derselben Menge G genau dann (inhaltlich) äquivalent sind, wenn die Erfüllungsmengen {x ∈ G | P (x)} und {x ∈ G | Q(x)} gleich sind.
(a) Versuchen Sie eine entsprechende Regel für die (inhaltliche) Implikation zu finden. Ihre Regel könnte etwa folgendermaßen lauten: „Es seien P (x) und Q(x) zwei Aussageformen über derselben Menge G. Dann ist die Aussage ∀x ∈ G : (P(x) ⇒ Q(x)) genau dann wahr, wenn {x ∈ G | P (x)} eine ... von {x ∈ G | Q(x)} ist.“
(b) Beweisen Sie die in Teil (a) gefundene Regel.