P1 = (100,00 | 100,00 | 0,00) - > Flughafen
P2 = (5,00|150,00|5,70) -> Flugzeug zum Zeitpunkt t = 0 Min.
Strecke Flugzeug zum Flughafen: Strecke P1P2 als Vektor auffassen und davon den Betrag bilden, Vektor P1P2 = (5,00|150,00|5,70) - (100,00 | 100,00 | 0,00) = (-95 | 50 | 5,7)
Betrag von Verkor P1P2 = Wurzel( (-95)2 + 502 + 5,72) = 107,5 km
P3 = (8,68|148,06|5,48) -> Flugzeug zum Zeitpunkt t = 1 Min.
Wenn das Flugzeug geradlinig fliegt, dann muss das Flugzeug den selbem Vektor folgen:
Vektor P2P3 = (8,68|148,06|5,48) - (5,00|150,00|5,70) = (3,68|-1,94|-0,22), ferner haben wir den Vektor P1P2 gegeben
Nun nutzen wir aus, dass bei zwei parallelen Vektoren, deren Linearität durch eine Konstante k beschrieben ist:
(Vektor P2P3) * k = Vektor P1P2
(3,68|-1,94|-0,22)*k = (-95 | 50 | 5,7), 1. Zeile ergibt: 3,68*k = -95 -> k = -25,8, 2. Zeile ergibt: -1,94*k=50 ->k = - 25,8, 3. Zeile ergibt -0,22*k = 5,7 -> k = -25,9 ; k ist in etwa gleich, insofern sind die beiden Vektoren parallel und das Flugzeug bewegt sich geradlinig.
Zeit zur Landung: Wir wissen den Weg zum Flughafen bei t = 0 min, er beträgt 107,5 km = s1. Der Weg, den das Flugzeug nach 1 Minute zurücklegt ist der Betrag des Vektors P2P3 = 4,17 km = s2. Bei der Annahme, dass die Geschwindigkeit des Flugzeuges konstant bleibt ?, gilt s1/t1 = s2/t2, t2 = t1*s2/s1= 1min*107,5 km/4,17km = 25,78 Min
Zur Berechnung des Winkels zwischen Flugzeug und Landebahn kann man das Skalarprodukt nutzen. Hierbei kann man neben dem Vektor P1P2 (Fluggerade) für die Landebahn am besten den Einheitsvektor (1|0|0) hernehmen. Berechnung erspare ich mir. Kannst eigenes Ausrechnen gerne versuchen.