Aufgabe:
Xn Folge unabhängiger, identisch Poisson Verteilter Zufallsvariablen mit Parameter 1.
a) Bestimmen Sie die Verteilung von Sn=X1+X2+...+Xn
b) Bestimmen Sie mit der Tschebyscheff- Ungleichung eine untere Abschätzung für P(395<S400<405)
c) Bestimmen Sie mit dem ZGWS eine Näherung für P(395<S400<405)
Hinweis: Sie dürfen ohne Beweis verwenden, dass E(X1)=Var(X1)=1 und E(Sn)=Var(Sn)=n
Meine Lösung:
a)
P(Sn=k)= e^{-n} * 1/(k!)
b)
P(395<S400<405) = P(395-400<S400-400<405-400) = P(|S400-400|<5)
Da E(S400)=400 kann man Tschebyscheff verwenden:
P(|S400-400|<5) = P(|S400-E(S400)|<5) >= 1 - Var(S400)/5^2 = 1- 400/5^2 = 1 - 16 = -15
c)
P(395<S400<405) = P((395-400*1)/sqrt(400*1)) < (S400 - nE(Xn))/sqrt(nVar(Xn)) = (S400-400)/sqrt(400) < (405-400*1)/sqrt(400*1)
= "ungefähr" = N0,1(5/20) - N0,1(-5/20) = 2* N0,1(5/20)-1 = 2* N0,1(0,25)-1 = "Tabelle" = 2*0,59871-1 = 0,19742
Wäre super wenn ihr mir sagen könnt ob ich dies richtig gelöst habe :)
Die Ergebnisse weichen ja stark voneinander ab deswegen bin ich mir nicht sicher ob das stimmt...