crazymath! Es gilt
$$\left(\sqrt{x}\right)'=\dfrac{1}{2\cdot\sqrt{x}}\quad\land\quad x>0.$$Diese Ableitung der Quadratwurzelfunktion wird in der Schulmathematik über den Grenzwert des Differenzenquotienten hergeleitet und ist wichtig genug, um sie zu kennen. Natürlich lässt sie sich aus dem genannten Grund auch den einschlägigen Formelsammlungen entnehmen.
Der Umweg über die Potenzregel, die in ihrer Allgemeingültigkeit in der Schulmathematik nicht(!) bewiesen wird und den du offenbar versucht hast, ist überflüssig und nicht sinnvoll!
Zusammen mit der Kettenregel gilt nun weiter
$$\left(\sqrt{v(x)}\right)'=\dfrac{v'(x)}{2\cdot\sqrt{v(x)}}\quad\land\quad v(x)>0.$$
Diese einfache Ableitungsregel führt am vorgelegten Beispiel unmittelbar zu
$$\dfrac{\text{d}}{\text{d}x}\sqrt{1-x^2-y^2} = \dfrac{-2x}{2\cdot\sqrt{1-x^2-y^2}}=\dots$$Das ist also eigentlich ein Einzeiler und kein Roman...