lim_{h->0} ((x+h)^n-x^n)/h | binomischer Lehrsatz
= lim_{h->0} ((x^n + nx^{n-1}h + ax^{n-2}h^2 + b(x^{n-3}h^3 …+h^n)-x^n)/h
= lim_{h->0} (x^n + nx^{n-1}h + ax^{n-2}h^2 + b(x^{n-3}h^3 …+h^n-x^n)/h
= lim_{h->0} ( nx^{n-1}h + ax^{n-2}h^2 + b(x^{n-3}h^3 …+h^n)/h | oben h ausklammern
= lim_{h->0} ( h(nx^{n-1} + ax^{n-2}h + b(x^{n-3}h^{2} …+h^{n-1})/h | h kürzen
= lim_{h->0} (nx^{n-1} + ax^{n-2}h + b(x^{n-3}h^{2} …+h^{n-1}) | Grenzübergang
= nx^{n-1} + 0 + 0 …+ 0
= nx^{n-1}