Wohl eher so:
Und dann OS = s = x*b
und s = a+ y*AC = a+y*(c-a) = a+y*( 3/4 b -1/4 a-a)
Gleichsetzen und nach a und b sortieren
xb = a+y*( 3/4 b -1/4 a-a) = a +3y/4 * b - 5y/4 * a
0 = (3y/4 - x)*b + ( 1 - 5y/4 ) * a
==> 3y/4 - x = 0 und 1 - 5y/4 = 0
1 = 5y/4
4/5 = y
3/5 - x = 0
x = 3/5
Also ist es von 0 nach S 3/5 der Strecke von 0 nach B.
Das Stück von S nach B also 2/5 und damit teilt S die Strecke 0B
im Verhältnis 3:2 ( wie angekündigt) und S teilt die Diagonale AC
im Verhältnis 4 : 1 ( wegen 4/5 und 1/5 ).