Extrempunkte. Nullstellen der Ableitung bestimmen. In die zweite Ableitung einsetzen. Ist das Ergebnis negativ, dann handelt es sich um einen Hochpunkt. Ist es positiv, dann handelt es sich um einen Tiefpunkt. Ist das Ergebnis Null, dann mit Vorzeichenwechselkriterium herausfinden, ob es sich um Hoch-, oder Tiefpunkt handelt.
Wendepunkte. Nullstellen der zweiten Ableitung bestimmen. In die dritte Ableitung einsetzen. Ist das Ergebnis negativ, dann geht die Funktion am Wendepunkt von einer Links- in einer Rechtskrümmung über. Ist es positiv, dann dann geht die Funktion am Wendepunkt von einer Recht- in einer Linkskrümmung über. Ist das Ergebnis Null, dann mit Vorzeichenwechselkriterium herausfinden, ob es sich um einen Wendpunkt handelt.
Globalverlauf. Der Leitkoeffizient -2 ist negativ, deshalb ist limx→∞ f(x) = -∞ (bei positivem Leitkoeffizieten wäre limx→∞ f(x) = ∞). Der Grad 3 ist ungerade, deshalb ist limx→-∞ f(x) = - limx→∞ f(x) = ∞ (bei geradem Grad wäre limx→-∞ f(x) = limx→∞ f(x)).