Es sollte auf jeden Fall einfacher gehen.
Was veranlasst dich zu dieser Vermutung?
1 = λA+γB+αC
μp = λB+γD+αE
βp = λF+γE+αG
$$\lambda={{B\,\left(E\,{\it \beta_p}-G\,{\it \mu_p} \right)+C\,\left(E\,{\it \mu_p}-D\,{\it \beta_p}\right)+D\,G-E^2 }\over{A\,\left(D\,G-E^2\right)-B^2\,G+C\,\left(B\,E-D\,F\right)+B\, E\,F}}$$ $$\gamma={{A\,\left(G\,{\it \mu_p}-E\,{\it \beta_p}\right)+C \,\left(B\,{\it \beta_p}-F\,{\it \mu_p}\right)-B\,G+E\,F}\over{A\, \left(D\,G-E^2\right)-B^2\,G+C\,\left(B\,E-D\,F\right)+B\,E\,F}}$$ $$\alpha=-{{B\,\left(-F\,{\it \mu_p}-E\right)+A\,\left(E\,{\it \mu_p}- D\,{\it \beta_p}\right)+B^2\,{\it \beta_p}+D\,F}\over{A\,\left(D\,G- E^2\right)-B^2\,G+C\,\left(B\,E-D\,F\right)+B\,E\,F}}$$