Es soll also
$$\prod \limits_{k=0}^{n} (1+x^{2^k}) = \frac{1-x^{2^{n+1}}}{1-x}$$
gezeigt werden.
Induktionsanfang (n = 0):
$$\prod \limits_{k=0}^{0} (1+x^{2^k}) = (1+x^{2^0}) = 1+x = \frac{1-x^{2^{0+1}}}{1-x} = \frac{1-x^2}{1-x} = \frac{1^2 - x^2}{1-x} = \frac{(1-x)(1+x)}{1-x} = 1+x \ .$$
Induktionsschritt (n -> n+1):
$$\prod \limits_{k=0}^{n+1} (1+x^{2^k}) = \left( \prod \limits_{k=0}^{n} (1+x^{2^k}) \right) \cdot (1+x^{2^{n+1}}) \overset{\text{I.A.}}{\underset{\text{}}{=}} \frac{1-x^{2^{n+1}}}{1-x} \cdot (1+x^{2^{n+1}}) = \frac{1 + x^{2^{n+1}} - x^{2^{n+1}} - x^{2^{n+1} + 2^{n+1}}}{1-x} = \frac{1 - x^{2 \cdot 2^{n+1}}}{1-x} = \frac{1 - x^{2^{n+2}}}{1-x} \ .$$