Zu a) Ist g o f injektiv, dann ist f injektiv:
Wenn gof injektiv ist, muss für beliebige $$x_1, x_2 \in D_{gof}, x_1 \neq x_2$$ gelten, dass $$gof(x_1) \neq gof(x_2)$$. Daraus folgt $$g(f(x_1)) \neq g(f(x_2))$$ Wäre $$f(x_1) = f(x_2)$$, könnte nicht $$g(f(x_1)) \neq g(f(x_2))$$ sein, also ist $$f(x_1) \neq f(x_2) \forall x_1, x_2 \in D_{gof}$$, also f injektiv.