wenn \(f\) genau eine Nullstelle hat, dann kannst du die Parabel in der Linearfaktorschreibweise darstellen:$$f(x)=a(x+4)^2$$ Nun bestimmst du \(a\) mit der Information, dass die Parabel die y-Achse bei P(0|8) schneidet:$$8=a(0+4)^2 \longrightarrow a=0.5$$ Wir haben also:$$f(x)=0.5(x+4)^2$$ Ausmulitpliziert, wenn du das besser findest:$$f(x)=0.5 x^2 + 4 x + 8$$