\((z-(1+2i))z=3-i\)
\( z^{2} \) - (1+2i)*z =3-i
(z-\( \frac{1+2i}{2} \))^2=3-i+(\( \frac{1+2i}{2} \))^2=3-i+\( \frac{1}{4} \)*(2i+1)^2=3-i+\( \frac{1}{4} \)*(4i^2+4i+1)=3-i+\( \frac{1}{4} \)*(4i-3)=\( \frac{9}{4} \)|\( \sqrt{} \)
1.)z-\( \frac{1+2i}{2} \)=\( \frac{3}{2} \)
z₁=\( \frac{1+2i}{2} \)+\( \frac{3}{2} \)=2+i
2.)z-\( \frac{1+2i}{2} \)=-\( \frac{3}{2} \)
z₂=\( \frac{1+2i}{2} \)-\( \frac{3}{2} \)=-1+i