Aufgabe:
Wir betrachten den Ring Z/nZ. Sei [a] ∈ Z/nZ, [a] ≠ [0]. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:
1) [a] ist kein Nullteiler in Z/nZ
2) ggT(x,n) = 1 für jeden Vertreter x von [a] in Z
3) ggT(x,n) = 1 für einen Vertreter x von [a] in Z
4) [a] besitzt ein multiplikatives Inverses im Ring Z/nZ, ist also eine Einheit.
Leider weiß ich nicht, wie ich dies hier angehen und beweisen soll. Ich wäre über Hilfe sehr dankbar!