ich muss folgende Aufgabe bearbeiten:
Geben sie ein Tripel (x,y,z) an, sodass die Matrix det\( \begin{pmatrix} a ^2+x & ab & ac \\ ab & b^2+y & bc \\ ac & bc & c^2+z \end{pmatrix} \) = a2*yz + b2*xz + c2*xy + xyz für jede Wahl von a,b,c invertierbar sind.
Ich weiß, dass die Determinante ≠ 0 sein muss, damit die Matrix invertierbar ist.
Wenn ich jetzt beispielsweise sage, dass x = y = z = 1 lauten, dann wäre ja gegeben, dass die Determinante ungleich 0 ist, da mit a2, b2 und c2 nie eine negative Zahl entstehen könnte, die die 1 bei x*y*z aufhebt, oder?