0 Daumen
1,1k Aufrufe

Aufgabe: Beim Graphen  y = log2 (x)  kommt jede reelle Zahl als Funktionswert vor. Ist das auch bei  y = log 0,3 (x) der Fall?


Problem/Ansatz:

Avatar von

3 Antworten

+1 Daumen

y = log0,3(x) ist die Umkehrfunktion zu y = 0,3^x

Da y = 0,3^x ganz R als Definitionsmenge besitzt hat y = log0,3(x) ganz R als Wertemenge.

Avatar von 487 k 🚀

Dir auch vielen Dank!

0 Daumen

Wo ist denn dein Ansatz?

Beachte: Logarithmusfunktionen vom Typ \(y=\log_b(x)\) sind zueinander proportional.

Avatar von 26 k

Hallo Gastaz0815,

wenn ich einen Ansatz gehabt hätte, hätte ich ihn natürlich auch mitgeliefert, ich hatte aber leider keinen Ansatz.

Danke für den Tipp zu den Logarithmusfunktionen

Ok, dann führe ich meinen Ansatz noch ein wenig aus. Es ist $$y = \log_{0.3}\left(x\right)=\dfrac{1}{\log_2\left(0.3\right)}\cdot\log_2\left(x\right)$$nach der Basiswechselformel für Logarithmen. Der rechte Faktor entspricht der schon in der Angabe erwähnten Funktion \(y = \log_2 (x)\), von der wir schon wissen, dass ihr Wertebereich die gesamten reellen Zahlen umfasst. Der linke Faktor ist konstant und von 0 verschieden, kann also als Streck- oder Proportionalitätsfaktor aufgefasst werden. Dieser Faktor streckt die Funktion \(y = \log_2 (x)\) zur Funktion \(y = \log_{0.3} (x)\). Dabei bleibt der Wertebereich unverändert.

Hallo Gastaz0815,

wenn ich einen Ansatz gehabt hätte, hätte ich ihn natürlich auch mitgeliefert, ich hatte aber leider keinen Ansatz.

Danke für den Tipp zu den Logarithmusfunktionen

Und danke für die nähere Ausführung.

0 Daumen

Ich vermute, es sollte so heißen: y = log2 (x) und   y = log0,3 (x).

Die Antwort ist dann: Ja.

Avatar von 123 k 🚀

Hallo Roland,

die Korrektur ist richtig und vielen Dank für die Antwort

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community