Ich muss folgende Aufgabe beweisen und brauche Hilfe dabei.
Aufgabe:
$$\text{ Sei } f:[a,b]\longrightarrow \mathbb{R} \text{ stetig und es gelte } f([a,b])\subset [a,b] \\[10pt] \text{Beweisen Sie, dass dann f mindestens ein Fixpunkt besitzt, d.h ein }\\ x_0\in [a,b]: f(x_0)=x_0$$
Problem/Ansatz:
Meine Überlegung war eine Argumentation über den Zwischenwertsatz aufzubauen, jedoch bin ich dabei mittendrin gescheitert:
$$\text{ Laut Zwischenwertsatz da } f:[a,b]\longrightarrow \mathbb{R} \text{ stetig und es gelte } f([a,b])\subset [a,b] \\\Longrightarrow \text{(1) } \forall u \in [f(a),f(b)]: f(a) \leq f(b) \exists x_0 \in [a,b]:f(x_0)=u \\ \text{(2) } \forall u \in [f(b),f(a)]: f(a) \lt f(b) \exists x_0 \in [a,b]:f(x_0)=u \\[10pt] \text{ Aus (1) und (2)} \Longrightarrow m:=min\{f(a),f(b)\} \land M:=max\{f(a),f(b)\} \\\Longrightarrow [m,M] \subseteq f[a,b]$$
Wie muss ich weiter mit dem direkten Beweis vorgehen um den Fixpunkt nachzuweisen?