1- 1/(n+1) + 1/((n+1)(n+2))
=((n+1)(n+2))/((n+1)(n+2)) - (n+2)/((n+1)(n+2)) + 1/((n+1)(n+2))
=((n+1)(n+2) - (n+2)+ 1 ) /((n+1)(n+2))
= (n^2 + 3n + 2 - n - 2 + 1 ) /((n+1)(n+2))
= (n^2 + 2n + 1 ) /((n+1)(n+2))
= (n + 1 )^2 /((n+1)(n+2))
Jetzt kannst du durch n+1 kürzen und hast
= (n + 1 ) / (n+2)
= ((n + 2 ) - 1 ) / (n+2)
= (n + 2 ) / (n + 2 ) - 1 / (n+2)
= 1 - 1 / (n+2)