$$\int \frac x{\sqrt{x^2 - 1}}\, \text{d}x$$
Substitution: $$u = x^2 -1 \implies \frac{\text{d}u}{\text{d}x} = 2x \implies \text{d}x = \frac{\text{d}u}{2x}$$Einsetzen in das Integral: $$\begin{aligned} \int \frac x{\sqrt{x^2 - 1}}\, \text{d}x &= \int \frac{x}{\sqrt u} \frac{\text{d}u}{2x} \\&= \frac 12 \int \frac{\text{d}u}{\sqrt u} \\& = \frac 12 \int u^{-\frac 12} \, \text{d}u \\&= \frac 12 \left( 2 u^{\frac 12}\right) + C \\&= \sqrt{x^2-1} + C\end{aligned}$$Gruß Werner