Zu 1)
Dein Schritt in Zeile drei ist unklar. Du scheinst beide Seiten der Gleichungen zu exponieren. Aber es ist unklar, zu welcher Basis dein Logarithmus gewählt ist. Anscheinend zur Basis 6.
Normalerweise geht man davon aus, dass \(\log\) die eulersche Zahl \(e \approx 2,71\) zur Basis hat. Aber das ist bei diesem Aufgabentyp gar nicht entscheidend:
Wenn du dir die Gleichung anschaust, siehst du, dass die Variable \(x\) nur im Exponenten vorkommt und überall derselbe Logarithmus (mit dem Argument 6) vorkommt.
Nutze die erstaunliche Eigenschaft des Logarithmus, dass Exponenten des Arguments genauso als Faktoren des Logarithmus geschrieben werden dürfen (folgende Gleichung gilt für alle reellen Zahlen, nicht nur für \(3\) und \(5\)):
\[ \log(5^3) = 3 \cdot \log(5) \]
Dadurch erhältst du den Logarithmus von 6 als Faktor jedes Summanden, durch den du auf beiden Seiten teilen kannst (folgende Gleichung ein ähnlicher Fall):
\( 3\cdot x + 3 \cdot (x+2) + 3 \cdot 8 = 0 \) wird zu \( x+ (x+2) +8=0\).
Bei 2) passiert dasselbe.