$$f(x)=x-2\cdot \sqrt{x}$$$$f'(x)=1-\frac{1}{\sqrt{x}}$$ Die erste Ableitung gibt die Steigung in jedem Punkt an, wenn sie größer als null ist, so ist die Funktion dort monoton steigend:$$1-\frac{1}{\sqrt{x}}\geq 0$$$$1\geq \frac{1}{\sqrt{x}}$$$$\sqrt{x}\geq 1$$$$x\geq 1$$ Die erste Ableitung gibt die Steigung in jedem Punkt an, wenn sie größer als null ist, so ist die Funktion dort monoton sinkend. Es ist dieselbe Rechnung, nur das Ungleichheitszeichen ist andersherum. Also sinkt die Funktion monoton für \(x\leq 1\).
Im lila-Bereich sinkt die Funktion, im blauen steigt sie.
https://www.desmos.com/calculator/lelllaqqdg