Schreibe um:$$f(x)=(x+1)\cdot \sqrt{x} \Leftrightarrow x\sqrt{x}+\sqrt{x}\Leftrightarrow x\cdot x^{\frac{1}{2}}+x^{\frac{1}{2}} \Leftrightarrow x^{\frac{3}{2}}+x^{\frac{1}{2}}$$ Nun einfach mit der Potenzregel ableiten:$$f'(x)=\frac{3}{2}\cdot x^{\frac{1}{2}}+\frac{1}{2}\cdot x^{-\frac{1}{2}}$$ Bzw. umgeschrieben:$$f'(x)=\frac{3\sqrt{x}}{2}+\frac{1}{2\sqrt{x}}$$ Zu deiner Version, die auch richtig ist:
Es ist \(x^{\frac{1}{2}}=\sqrt{x}\) und damit \(x^{-\frac{1}{2}}=\frac{1}{\sqrt{x}}\). Also ist deins umgeschrieben:$$f'(x)=\sqrt{x}+\frac{1}{2\sqrt{x}}(x+1)$$