\(\vec{AD}\) = \(\frac{4}{3}\vec{q}\), \(\vec{AB}\) = \(3\vec{p}\)
\(\vec{AC}\) = \(\vec{AD}\) + \(\vec{AB}\)
\(\vec{AM}\) = \(\frac{1}{2}\vec{AC}\)
\(\vec{AD}\) = \(\vec{AB}\) + \(\vec{BD}\)
Wenn man sich Vektoren als Verschiebungen vorstelt, dann ist die Addition von Vektoren eine Hintereinanderausführung von Verschiebungen. Geometrisch kannst du \(\vec{p}\) + \(\vec{q}\) zeichnen indem du den Pfeil von \(\vec{q}\) an die Spitze von \(\vec{p}\) setzt. Der Pfeil von \(\vec{p}\) + \(\vec{q}\) verläuft dann vom anfang von \(\vec{p}\) bis zur Spitze von \(\vec{q}\).
Wenn man sich Vektoren als Verschiebungen vorstelt, dann ist die Multiplikation von Vektoren eine Verschiebungen in die gleiche Richtung um einen anderen Betrag. Geometrisch kannst du \(\frac{1}{4}\vec{p}\) zeichnen indem du den Pfeil von \(\vec{p}\) auf ein Viertel seiner ursprünglichen Länge verkürzt. Bei \(-\frac{1}{4}\vec{p}\) werden auch noch Anfang und Spitze des Pfeils vertauscht, die Richtung wird also umgekehrt.