AB = [6, -8, 0] ; AD = [8, 6, 0]
S = A + 1/2·AB + 1/2·AC + [0, 0, 10] = [11, 1, 10]
AS = [7, -1, 10]
NABS = AB ⨯ AS = [-80, -60, 50] = 10·[-8, -6, 5]
NADS = AD ⨯ AS = [60, -80, -50] = 10·[6, -8, -5]
α = ACOS([-8, -6, 5]·[6, -8, -5]/(ABS([-8, -6, 5])·ABS([6, -8, -5]))) = 101.5°