Aufgabe:
Gegeben seien die folgenden Basen des Vektorraums \(V = \{p \in R[t] \mid \operatorname{deg}(p) \leq 3\}\) aller Polynome vom Grad
kleiner gleich 3:
$$\mathcal{A} = (t^3, t^2, t, 1)$$
a) Stellen Sie das Polynom \(p(t) = 3t^3 + t^2 − 1\) in Koordinatendarstellung bzgl. Basis \(\mathcal{A}\) dar.
Problem/Ansatz:
\(\lambda_1 t^3+\lambda_2 t^2+\lambda_3 t^1+\lambda 4 t^0 = 3t^3+t^2-1t^0\implies \lambda_1=3,\; \lambda_2=1,\;\lambda_3=0,\;\lambda_4=-1\)
Alles schön und gut, aber wie stelle ich das jetzt in der Koordinatendarstellung dar? Einfach $$\begin{pmatrix}3\\1\\0\\-1\end{pmatrix}\cdot \begin{pmatrix}t^3\\t^2\\t^1\\t^0\end{pmatrix}=3t^2+t^2-1$$
schreiben, oder wäre das zu einfach? xD