Aufgabe:
Für welche \(\displaystyle\alpha,\beta,\gamma\in\mathbb{R}\) existieren
(i) \(\displaystyle\int_0^\infty x^\alpha e^{\beta x}dx\),
(ii) \(\displaystyle\int_1^\infty\frac{lnx}{x^\gamma}dx\)?
Berechnen Sie gegebenenfalls den Wert des Integrals.
Hinweis zu (i): Schätzen sie die Integranden bei 0 und \(\displaystyle\infty\) geeignet ab.
Problem/Ansatz:
Mit (i) kann ich leider nichts anfangen, wie geht man da am besten vor?
Für (ii) habe ich über partielle Integration \(\displaystyle -\frac{x^{1-\gamma}((\gamma-1)ln(x)+1)}{(\gamma-1)^2}+C\) als Stammfunktion. Daraus folgt, dass \(\displaystyle \gamma\neq 1\). Kann man hierfür einen Wert angeben?