(a)
IA: n = 1, 1 + 1/1 = 2 = 1+1
IS: n -> n + 1
$$\prod_{v=1}^{n+1}(1+ \frac{1}{v}) = (\prod_{v=1}^{n}(1+\frac{1}{v})) \cdot (1 + \frac{1}{n+1}) = (n+1)(1 + \frac{1}{n+1}) = (n+1) + 1$$
(b)
IA: n = 1, 1^3 + 5*1 = 1 + 5 = 6 durch 6 teilbar
IS: n -> n+1
(n+1)^3 + 5(n+1) = n^3 + 3n^2 + 3n + 1 + 5n + 5 = 6x + 3n^2 + 3n + 6 = 6x + (3n^2 + 3n + 6)
bleibt zu zeigen, dass 3n^2 + 3n + 6 durch 6 teilbar ist:
Wenn n gerade:
3(2m)^2 + 3(2m) + 6 = 3*4m^2 + 6m + 6 = 12m^2 + 6m + 6 = 6(2m^2 + m + 1)
Wenn n ungerade:
3(2m+1)^2 + 3(2m+1) + 6 = 3(4m^2 + 4m + 1) + 6m + 3 = 12m^2 + 12m + 3 + 6m + 3 = 12m^2 + 12m + 6m + 6 = 6(2m^2 + 2m + 1)
Also (n+1)^3 + 5(n+1) = 6x + 6y = 6(x+y) durch 6 teilbar.