Aloha :)
Die gesuchte kubische Parabel soll zwingend durch den Ursprung gehen, daher hat sie die Form:
$$f(x)=ax^3+bx^2+cx$$Wertet man diese Funktion für die gegebenen 4 x-Werte aus, erhalten wir:
$$f(-2)=a(-2)^3+b(-2)^2+c(-2)=-8a+4b-2c$$$$f(-1)=a(-1)^3+b(-1)^2+c(-1)=-a+b-c$$$$f(0)=a(0)^3+b(0)^2+c(0)=0$$$$f(1)=a(1)^3+b(1)^2+c(1)=a+b+c$$
Wir haben nun den Vektor \((f(-2),f(-1),f(0),f(1))\) aus den gerade berechneten Funktionswerten und den Vektor \((3,2,-1,-2)\) mit den gemessenen Werten. Beide sollen "möglichst gleich" sein. Den Messwertvektor ist fest, aber den f-Vektor können wir durch Wahl der Parameter a,b und c ändern. Nach der Gauß'schen Methode der kleinsten Fehlerquadrate sind die Parameter so zu wählen, dass der Differenzvektor der beiden Vektoren minimale Länge hat:
$$\left|\left(\begin{array}{c}-8a+4b-2c\\-a+b-c\\0\\a+b+c\end{array}\right)-\left(\begin{array}{c}3\\2\\-1\\-2\end{array}\right)\right|\stackrel{!}{\to}\text{Minimum}$$Anstatt des Betrages können wir mit demselben Ergebnis auch das Quadrat minimieren, sodass wir das Minimum folgender Funktion suchen:
$$F(a,b,c):=(-8a+4b-2c-3)^2+(-a+b-c-2)^2+(0+1)^2+(a+b+c+2)^2$$Die partiellen Ableitungen müssen Null werden:
$$0\stackrel{!}{=}\frac{\partial F}{\partial a}=4(33a-16b+9c+14)$$$$0\stackrel{!}{=}\frac{\partial F}{\partial b}=-4(16a-9b+4c+6)$$$$0\stackrel{!}{=}\frac{\partial F}{\partial c}=4(9a-4b+3c+5)$$Wir erhalten folgendes Gleichungssystem:
$$\left(\begin{array}{c}33&-16&9\\16&-9&4\\9&-4&3\end{array}\right)\cdot\left(\begin{array}{c}a\\b\\c\end{array}\right)=\left(\begin{array}{c}-14\\-6\\-5\end{array}\right)$$
Die Lösung dieses Gleichungssystems ist: \(a=\frac{1}{6}\;\;;\;\;b=0\;\;;\;\;c=-\frac{13}{6}\) und damit:
$$f(x)=\frac{1}{6}x^3-\frac{13}{6}x$$Ich habe das Problem mit Hilfe der Ausgleichsrechnung gelöst und komme auf dasselbe Ergebnis wie wenn ich den Messpunkt (0;-1) einfach weggelassen hätte. Das ist auch klar, weil nach Bildung der partiellen Ableitungen die 3-te Komponente des Differenzvektors (also die 1) gar nicht weiter zum Rest der Rechnung beiträgt.