Aufgabe:
$$\begin{array}{l}{\text { Sei } C \text { der Code, welcher durch die Abbildungsregel }} \\ {\qquad \mathbb{F}_{2}^{3} \rightarrow \mathbb{F}_{2}^{6},\left(x_{1}, x_{2}, x_{3}\right)^{T} \mapsto\left(x_{1}, x_{2}, x_{3}, x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+x_{1}\right)^{T}} \\ {\text { gegeben ist. Bestimmen Sie den Hammingabstand von } C .} \\ \\{\qquad \qquad Lösung: d(C) = 3}\end{array}$$
Problem/Ansatz:
Meiner Meinung nach müsste die Matrix C folgendermaßen aussehen:
\( \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \)
Der Hammingabstand von C ist ja dadurch definiert, um wie viele Stellen sich 2 gleich lange Zeichenketten innerhalb des Codes unterscheiden. Wenn meine Annahme für die Matrix C so stimmt, müsste d(C)=2 sein.
Mein Fehler muss daher in der Matrix selbst liegen... Wäre sehr erfreut, wenn mir hier jemand weiterhelfen könnte.