Kann jemand mir bitte dabei helfen:
Zeigen Sie, dass für relle Zahl q und jede natürliche Zahl n gilt
qn = 1+ (q - 1) \( \sum\limits_{k=0}^{n-1}{qk} \)
Das kannst du mit vollständiger Induktion beweisen.
Habe versucht aber ich komme damit nicht klar
Wie weit bist du gekommen?
Wenn n gleich 1 ist konnte ich das nicht beweisen
linke Seite: q1
rechte Seite: 1+(q-1)*q0
Wo liegt konkret das Problem?
Könntest du mir mal die Lösung zeigen ich komme damit wirklich nicht weiter
Was erhältst du links, was erhältst du rechts (nach entsprechenden Vereinfachungen)?
ich glaube für beide Seite erhält man nur q oder? Und dann hier komme ich nicht weiter
Ja, also funktioniert der Induktionsanfang. Jetzt mache die Induktion.
Wie funktioniert dann die Induktionsbehauptung ?
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos