Der Spann einer nicht leeren Menge A ist definiert als die Menge aller Linearkombinationen der Elemente in A.
Der Spann der leeren Menge ist definiert als der Nullvektor.
Das sind die üblichen Definitione, welche man überall findet.
Problem: Es gibt nicht den Nullvektor. Verschiedene Vektorräume haben unterschiedliche Objekte als Nullvektor. Wenn ich den Spann der leeren Menge mit dem Nullvektor eines bestimmten Vektorraumes identifiziere, kann er nicht identisch sein mit einem Nullvektor eines anderen Raumes, wenn dieser ein anderes Objekt als Nullvektor besitzt.
Aber es kann keinen ausgezeichneten Nullvektor geben, da der Nullvektoren Basen der Nullräume sein sollen.
Warum also diese Schreibweise (Notation)? Sollte man den Spann nicht zu einem Vektroraum relativieren e.g.
Spann der leeren Menge bzgl. des K Vektrorraumes V