muss folgende Aufgabe via vollständige Induktion beweisen und bin hängengeblieben :(
Aufgabe:
\( \forall n \in \mathbb{N}_0: \sum \limits_{k=0}^{n} \frac{1}{\sqrt{k +1}+\sqrt{k}}=\sqrt{n+1} \)
Ansatz:
\( \text{I.A: } n=0 \\ \sum \limits_{k=0}^{0} \frac{1}{\sqrt{0+1}+\sqrt{0}} =\sqrt{0 +1} \\\Longleftrightarrow \sum \limits_{k=0}^{0} 1 =1 \checkmark \\\text{I.V: } \sum \limits_{k=0}^{n} \frac{1}{\sqrt{k +1}+\sqrt{k}}=\sqrt{n+1} \\\text{I.B: } \sum \limits_{k=0}^{n+1} \frac{1}{\sqrt{k +1}+\sqrt{k}} \text{ != }\sqrt{n+2} \\ \sum \limits_{k=0}^{n+1} \frac{1}{\sqrt{k +1}+\sqrt{k}}= \sum \limits_{k=0}^{n} \sqrt{n+1}+ \frac{1}{\sqrt{n +2}+\sqrt{n+1}} \\\Longleftrightarrow \frac{\sqrt{n+1}*(\sqrt{n +2}+\sqrt{n+1})}{\sqrt{n +2}+\sqrt{n+1}}+ \frac{1}{\sqrt{n +2}+\sqrt{n+1}}= \frac{\sqrt{n+1}*(\sqrt{n +2}+\sqrt{n+1})+1}{\sqrt{n +2}+\sqrt{n+1}} \\\Longleftrightarrow \frac{\sqrt{n+1}*\sqrt{n +2}+\sqrt{(n+1)*(n+1)}+1}{\sqrt{n +2}+\sqrt{n+1}}=\frac{\sqrt{n+1}*\sqrt{n +2}+n+2}{\sqrt{n +2}+\sqrt{n+1}} \)
Ist etwa meine Rechnung Falsch, habe ich was übersehen oder entnehme ich aus dem Beweis nun, dass die Aussage nicht für alle natürliche Zahlen gilt?
Vielen Dank im Voraus!