0 Daumen
174 Aufrufe

Aufgabe:

(a) Sind im R3 die Untervektorräume U := L((1,1,0),(1,0,-1)) und W:=L((1,1,0),(1,0,-1),(0,1,1))

gleich oder verschieden?
(b) Betrachten Sie im R-Vektorraum R[T] die Polynome Pi, Qi, definiert durch P1(T) := T(T -1), P2(T) := (T + 1)

(T − 1), P3(T) := T(T + 1), Q1(T) := T, Q2(T) = T2
Sind die Unterräume L(P1, P2, P3) und L(P1, P2, P3, Q1, Q2) gleich oder verschieden?
Ist die Familie P1, P2, P3 linear unabhängig? Ist die Familie P1, P2, P3, Q1, Q2 linear unabhängig?


Problem/Ansatz:

Ich wäre für einen Denkanstoß oder eine Vorrechnung sehr dankbar.

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community