mit Taylor:
= \( \lim\limits_{x\to\infty} \)( x (1+\( \frac{1}{x} ) ^{\frac{1}{6}} \) - x (1-\( \frac{1}{x} ) ^{\frac{1}{6}} \) ) x6 ausklammern
= \( \lim\limits_{x\to\infty} \) x [ (1+\( \frac{1}{x} ) ^{\frac{1}{6}} \) - (1-\( \frac{1}{x} ) ^{\frac{1}{6}} \) ]
= \( \lim\limits_{x\to\infty} \) x [ (1+\( \frac{1}{6x} +o( \frac{1}{x^{2}}) ) \) - (1-\( \frac{1}{6x} +o( \frac{1}{x^{2}})) \) ]
= \( \lim\limits_{x\to\infty} \) x [ (\( \frac{1}{6x} + \frac{1}{6x} +o( \frac{1}{x^{2}})) \) ] x kürzen
= \( \lim\limits_{x\to\infty} \) [ (\( \frac{1}{6} + \frac{1}{6} +o( \frac{1}{x^{2}})) \) ]
= \( \frac{2 }{6 } \) = \( \frac{1 }{3 } \)
Erklärung:
f(h)=(1+h)1/6 = f(1) + hf'(1) +o(h2)
f'(h) = (1+h)-5/6*1/6, also f(0)=1, f'(0)=1/6
also: (1+h)1/6 = 1 + h/6 +o(h2), Konvergenzbereich -1≤x≤1
jetzt schreibe für h=1/x, dann stimmts für große Zahlen:
(1+x)1/6 = 1 + 1/(6x) +o(1/x2)
direkt:
= \( \lim\limits_{x\to\infty} \)( x (1+\( \frac{1}{x} ) ^{\frac{1}{6}} \) - x (1-\( \frac{1}{x} ) ^{\frac{1}{6}} \) ) x6 ausklammern
= \( \lim\limits_{x\to\infty} \)(x \( a^{\frac{1}{6}} \) - x \( b^{\frac{1}{6}} \) ) als Abkürzung
=\( \lim\limits_{x\to\infty} \) x ( \( a^{\frac{1}{6}} \) - \( b^{\frac{1}{6}} \)) jetzt 3. binom.
=\( \lim\limits_{x\to\infty} \) x \( \frac{( a^{\frac{1}{6}} - b^{\frac{1}{6}} )( a^{\frac{1}{6}} + b^{\frac{1}{6}} ) }{( a^{\frac{1}{6}} + b^{\frac{1}{6}} ) } \)
=\( \lim\limits_{x\to\infty} \) x \( \frac{( a^{\frac{2}{6}} - b^{\frac{2}{6}} ) }{( a^{\frac{1}{6}} + b^{\frac{1}{6}} ) } \) jetzt (x-y)(x2+xy+y2)=x3-y3 anwenden
=\( \lim\limits_{x\to\infty} \) x \( \frac{(a^{\frac{1}{3}} - b^{\frac{1}{3}} )( a^{\frac{2}{3}} +a^{\frac{1}{3}} b^{\frac{1}{3}} +b^{\frac{2}{3}} ) }{( a^{\frac{1}{6}} + b^{\frac{1}{6}} )( a^{\frac{2}{3}} +a^{\frac{1}{3}} b^{\frac{1}{3}} +b^{\frac{2}{3}} ) } \)
=\( \lim\limits_{x\to\infty} \) x \( \frac{(a-b ) }{( a^{\frac{1}{6}} + b^{\frac{1}{6}} )( a^{\frac{2}{3}} +a^{\frac{1}{3}} b^{\frac{1}{3}} +b^{\frac{2}{3}} ) } \)
=\( \lim\limits_{x\to\infty} \) x \( \frac{((1+ \frac{1}{x} )-(1- \frac{1}{x} ) ) }{( a^{\frac{1}{6}} + b^{\frac{1}{6}} )( a^{\frac{2}{3}} +a^{\frac{1}{3}} b^{\frac{1}{3}} +b^{\frac{2}{3}} ) } \) Zähler zusammenfassen, x kürzen
=\( \lim\limits_{x\to\infty} \) \( \frac{2 }{( a^{\frac{1}{6}} + b^{\frac{1}{6}} )( a^{\frac{2}{3}} +a^{\frac{1}{3}} b^{\frac{1}{3}} +b^{\frac{2}{3}} ) } \)
=\( \frac{2 }{( 1 + 1)( 1 +1*1+1 ) } \) = \( \frac{2 }{6 } \) = \( \frac{1 }{3 } \)