erstaunlich, dass eine IMHO offensichtlich falsche Antwort so (fast) ohne Widerspruch bleibt. Eine p-adische Entwicklung einer Zahl \(0 \le x \lt 1 \) besteht doch wohl in der Folge
$$x = \sum_{i=1}^{\infty} a_i q^{-i}, \quad a_i \in \mathbb{N}_0 \land a_i \lt q$$im obigen Fall ist \(a_1=2\), \(a_2=1\) und \(a_3=2\) und für alle weiteren \(a_i\) gilt wegen der Periode$$a_{3i+1} = 2, \space a_{3i+2} = 1, \space a_{3i} = 2 \quad i \in \mathbb{N}$$Hier gilt$$\begin{aligned} x & = 0,\overline{212}_q\\ x \cdot q^3 &= 2\cdot q^2 + 1\cdot q + 2 + \sum_{i=1}^{\infty} a_i q^{-i} \quad a_i \to \text{s.o.}\end{aligned}$$
Also ist $$\begin{aligned} x\cdot q^3 - x &= 2\cdot q^2 + 1\cdot q + 2 \\ x &= \frac{2q^2 + q + 2}{q^3 - 1}\end{aligned}$$Und für \(q=3\) oder \(q=7\) bedeutet das dann:$$x_{q=3} = 0,\overline{212}_3 = \frac{2 \cdot 3^2 + 3 + 2}{3^3-1} = \frac{23}{26} \\ x_{q=7} = 0,\overline{212}_7= \frac{2 \cdot 7^2 + 7 + 2}{7^3-1} = \frac{\colorbox{#ffff00}{107}}{342}$$
Gruß Werner