\( 2 x^{3}*y^{\prime}-x^{2} y-x^{7 / 2}=0 \quad |+x^{\frac{7}{2}} \)
\( 2 x^{3} \cdot y^{\prime}-x^{2} y=x^{7 / 2} \quad |:2 x^{3} \)
\( y^{\prime}-\frac{y}{2 x}=\frac{\sqrt{x}}{2} \)
\( y^{\prime}-\frac{y}{2 x}=0 \)
\( \frac{d y}{d x}=\frac{y}{2 x} \)
\( \begin{array}{rl}{2 \frac{d y}{y}} & {=\frac{d x}{x}} \\ {2} & {\ln |y|=\ln |x|+C \quad |: 2} \\ {\ln |y|} & {=\frac{1}{2}(\ln |x|+c)} \\ {|y|} & {=e^{\frac{1}{2} \ln |x|}* e^{c}} \\ {y_{h}} & {=c_{1} \cdot \sqrt{x}}\end{array} \)